OBJECTIVE: To explore the taste-related quality markers of Qingbanxia, the alum-processed Pinellia ternata tuber. METHODS: Eighteen samples of Banxia and Qingbanxia were analyzed by the Ultra-High Performance Liquid Chromatography coupled with Q-Exactive Orbitrap Mass Spectrometry. Data of all samples were pre-processed by Compound Discoverer 3.3 Software. The discrimination was analyzed by Principal Component Aanalysis, and Orthogonal Partial Least-square Discriminant Analysis. The chemical markers were identified by MS/MS fragments based on the fragment rules. The electronic tongue was utilized to determine the taste traits of Banxia and Qingbanxia. Furthermore, the taste-related material basis was discovered according to correlation analysis and molecular docking. RESULTS: Sixteen potential chemical markers of Banxia and Qingbanxia were identified. Lauryldiethanolamine is a unique bitter component. The taste spectrum of bitterness, sourness and umami changes significantly during the processing of Banxia, with sourness increasing and bitterness and umami decreasing. CONCLUSION: A new approach to explore the taste-related quality markers in alum-processed Banxia was established for the first time based on the Orbitrap MS technology and electronic tongue technology. The bitterness chemical markers were identified for the first time. The mechanism of the sourness of Qingbanxia was clarified. The identification of taste-related quality markers and the generation of comprehensive taste profiles offer an objective and reproducible method for assessing processing efficacy, overcoming the limitations of traditional subjective taste tests. These findings have significant implications for the quality control of Banxia and other traditional Chinese medicine.