Unveiling the potential of Brachiaria ruziziensis: Comparative analysis of multivariate and machine learning models for biomass and NPK prediction using Vis-NIR-SWIR spectroscopy.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Everson Cezar, Leticia de Melo Teixeira, Roney Berti de Oliveira, Glaucio Leboso Alemparte Abrantes Dos Santos, Marcos Rafael Nanni, Amanda Silveira Reis, Marlon Rodrigues

Ngôn ngữ: eng

Ký hiệu phân loại: 272.3 Persecutions of Waldenses and Albigenses

Thông tin xuất bản: England : Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 643382

This study investigated the development and validation of predictive models for estimating foliar nitrogen (N), phosphorus (P), and potassium (K) contents, along with shoot dry mass (SDM) of Brachiaria ruziziensis L. The approach utilized Vis-NIR-SWIR spectroscopy coupled with multivariate statistical techniques (PLS, PCR) and machine learning algorithms (SVM, RF). A triple-factorial, completely randomized design with ten replications per treatment was employed in a greenhouse setting. Treatments included type of input (limestone-mining coproducts), input particle size (filler and powder), and soil class (Arenosol and Ferralsol). Following input incubation, B. ruziziensis was sown. Forty days later, foliar spectra and leaves were collected. Chemical analysis determined NPK content, along with SDM. The study developed predictive models utilizing Vis-NIR-SWIR spectroscopy, Partial Least Squares (PLS), and machine learning algorithms like Support Vector Machine (SVM) and Random Forest (RF) to estimate foliar N, P, K, and biomass. Model adjustments achieved R
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH