In fermented chokeberry products, hydroxycinnamic acids are enzymatically converted into 4-vinyl derivatives by phenolic acid decarboxylase (PAD), which react with anthocyanins (ACNs) to form stable pyranoanthocyanins (PACNs) that enhance color stability and exhibit excellent bioactivity. However, the fermentation process is usually acidic, the level of PAD secreted by microorganisms is limited and PAD has poor acid stability, resulting in low PACN production. To overcome this, we engineered a whole-cell biocatalyst (WCB) by displaying PAD from Lactiplantibacillus plantarum on Pichia pastoris GS115 (dLPPAD). This WCB showed improved acid tolerance and thermal stability, efficiently converting Aronia melanocarpa anthocyanins (AMAs) into PACNs. Additionally, we examined the relationship between hydroxycinnamic acid structure and LPPAD catalytic efficiency. This work introduces a cost-effective, impurity-free biocatalytic strategy to enhance PACN yields, with potential applications in berry fermentation products and related industries.