MBSS-T1: Model-based subject-specific self-supervised motion correction for robust cardiac T1 mapping.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Israel Cohen, Moti Freiman, Eyal Hanania, Daphna Link-Sourani, Ilya Volovik, Adi Zehavi-Lenz

Ngôn ngữ: eng

Ký hiệu phân loại: 571.63 Cell anatomy, morphology, biophysics, culture

Thông tin xuất bản: Netherlands : Medical image analysis , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 643422

Cardiac T1 mapping is a valuable quantitative MRI technique for diagnosing diffuse myocardial diseases. Traditional methods, relying on breath-hold sequences and cardiac triggering based on an ECG signal, face challenges with patient compliance, limiting their effectiveness. Image registration can enable motion-robust cardiac T1 mapping, but inherent intensity differences between time points pose a challenge. We present MBSS-T1, a subject-specific self-supervised model for motion correction in cardiac T1 mapping. Physical constraints, implemented through a loss function comparing synthesized and motion-corrected images, enforce signal decay behavior, while anatomical constraints, applied via a Dice loss, ensure realistic deformations. The unique combination of these constraints results in motion-robust cardiac T1 mapping along the longitudinal relaxation axis. In a 5-fold experiment on a public dataset of 210 patients (STONE sequence) and an internal dataset of 19 patients (MOLLI sequence), MBSS-T1 outperformed baseline deep-learning registration methods. It achieved superior model fitting quality (R
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH