Hydroxyfluorapatite (HFAp) materials possess a structural and compositional similarity to bone tissue and dentin. These bioceramics facilitate various physiological functions, including ion exchange within surface layers. Additionally, magnesium (Mg) serves as a primary substitute for calcium in the biological apatite found in the calcified tissues of mammals, while zinc (Zn) contributes to overall bone quality and exhibits antibacterial properties. Although multiple studies have examined the individual substitution of ions within the hydroxyapatite (HAp) structure, no research to date has investigated the simultaneous substitution of zinc, fluoride, and varying amounts of magnesium in calcium HAp. This study explores the incorporation of magnesium into the structure of zinc-calcium hydroxylfluorapatite. A series of ion-substituted apatites, represented as Ca