Antibiotic resistance genes (ARGs) and pathogenic bacteria pose significant challenges to human health, and hydrodynamic processes complicate their transmission mechanisms in lake ecosystems, particularly in tropical regions. Lake Victoria supports abundant water resources and provides livelihoods for millions of people, yet the environmental behavior of ARGs and pathogenic bacteria remains unclear. Herein, the novel insights into the co-occurrence patterns and transmission mechanisms of ARGs and pathogenic bacteria in Lake Victoria was investigated via molecular techniques and a hydrodynamic model. The results showed that as a large reservoir of ARGs and pathogenic bacteria, a total of 172 ARG subtypes and 93 pathogenic bacteria were identified in Lake Victoria. ARGs were spread through mobile genetic elements (tnpA4 and int2), enhancing the antibiotic resistance and virulence factors (secretion systems, regulatory factors, and toxins) of various pathogenic bacteria. The hydrodynamic model indicated that surface wind-driven currents and bottom compensatory flows shaped the outward dispersion of ARGs and pathogenic bacteria from the gulf. The NCM model suggested that water exchange accelerated the diffusion of antibiotics and pathogens, likely enhancing the deterministic assembly process of ARGs and the stochastic assembly process of pathogens. The PLS-PM model revealed that hydrodynamics directly influenced the accumulation of ARGs and pathogenic bacteria, and subsequently affected the diffusion and distribution patterns of ARGs and pathogens by facilitating the propagation of MGEs. Our study overcomes the limitations associated with lake and microenvironmental scale, providing insights and understanding into the transmission mechanisms of ARGs and pathogenic bacteria.