Glycolysis reprogramming in CAFs promotes oxaliplatin resistance in pancreatic cancer through circABCC4 mediated PKM2 nuclear translocation.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Chujie Chen, Rufu Chen, Zhiqiang Fu, Rihua He, Chonghui Hu, Tianhao Huang, Tingting Li, Qing Lin, Qing Tian, Yuan Yuan, Shangyou Zheng

Ngôn ngữ: eng

Ký hiệu phân loại:

Thông tin xuất bản: England : Cell death & disease , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 644214

Cancer-associated fibroblasts (CAFs) play a key role in oxaliplatin resistance in pancreatic ductal adenocarcinoma (PDAC). However, the potential mechanisms by which CAFs promote chemotherapy resistance have not yet been explored. In this study, we found that circABCC4 (hsa_circ_0030582) was positively correlated with poor platinum-chemotherapeutic response and a shorter progression-free survival (PFS) time in late-stage PDAC patients. CircABCC4 enhanced the ability of CAFs to induce oxaliplatin resistance in pancreatic cancer cells through glycolysis reprogramming. Mechanistically, circABCC4 enhanced the interaction between PKM2 and KPNA2 to promote PKM2 nuclear translocation in CAFs, leading to the transcription of glycolysis-related genes. The glycolytic reprogramming of CAFs promoted the secretion of IL-8, which in turn enhanced DNA damage repair in pancreatic cancer. Blocking PKM2 nuclear translocation abolished circABCC4-driven oxaliplatin resistance of pancreatic cancer in vivo. Collectively, our study reveals a circRNA-mediated glycolysis reprogramming of CAFs to induce oxaliplatin resistance and highlights circABCC4 as a potential therapeutic target.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH