Radiotherapy using very-high-energy electron (VHEE) beams (50-300 MeV) has attracted considerable attention due to its advantageous dose deposition characteristics, enabling deep penetration and easy manipulation by magnetic components. One promising approach to compactly delivering these high energy electron beams in a cost-effective manner is laser wakefield acceleration (LWFA), which offers ultra-strong accelerating gradients. However, the transition from this concept to a functional machine intended for tumor treatment remains elusive. Here we present the self-developed pro- totype for LWFA-based VHEE radiotherapy, exhibiting compactness (occupying less than 5 m