Mol-AIR: Molecular Reinforcement Learning with Adaptive Intrinsic Rewards for Goal-Directed Molecular Generation.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Jaegyoon Ahn, Jonghwan Choi, Jibum Kim, Jinyeong Park

Ngôn ngữ: eng

Ký hiệu phân loại: 006.31 Machine learning

Thông tin xuất bản: United States : Journal of chemical information and modeling , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 647321

Optimizing techniques for discovering molecular structures with desired properties is crucial in artificial intelligence (AI)-based drug discovery. Combining deep generative models with reinforcement learning has emerged as an effective strategy for generating molecules with specific properties. Despite its potential, this approach is ineffective in exploring the vast chemical space and optimizing particular chemical properties. To overcome these limitations, we present Mol-AIR, a reinforcement learning-based framework using adaptive intrinsic rewards for effective goal-directed molecular generation. Mol-AIR leverages the strengths of both history-based and learning-based intrinsic rewards by exploiting random distillation network and counting-based strategies. In benchmark tests, Mol-AIR demonstrates improved performance over existing approaches in generating molecules having the desired properties, including penalized LogP, QED, and celecoxib similarity, without any prior knowledge. We believe that Mol-AIR represents a significant advancement in drug discovery, offering a more efficient path to discovering novel therapeutics.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH