Intrinsically Adhesive and Conductive Hydrogel Bridging the Bioelectronic-Tissue Interface for Biopotentials Recording.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Xue Feng, Yang Jiao, Jiazheng Lao, Yinji Ma, Yutong Wang, Hanyan Xu, Jing Yu, Yingchao Zhang

Ngôn ngữ: eng

Ký hiệu phân loại:

Thông tin xuất bản: United States : ACS nano , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 650508

Achieving high-quality biopotential signal recordings requires soft and stable interfaces between soft tissues and bioelectronic devices. Traditional bioelectronics, typically rigid and dependent on medical tape or sutures, lead to mechanical mismatches and inflammatory responses. Existing conducting polymer-based bioelectronics offer tissue-like softness but lack intrinsic adhesion, limiting their effectiveness in creating stable, conductive interfaces. Here, we present an intrinsically adhesive and conductive hydrogel with a tissue-like modulus and strong adhesion to various substrates. Adhesive catechol groups are incorporated into the conductive poly(3,4-ethylenedioxythiophene) (PEDOT) hydrogel matrix, which reduces the PEDOT size and improves dispersity to form a percolating network with excellent electrical conductivity and strain insensitivity. This hydrogel effectively bridges the bioelectronics-tissue interface, ensuring pristine signal recordings with minimal interference from bodily movements. This capability is demonstrated through comprehensive
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH