Nitric oxide is an endogenous biological signaling molecule, and the corresponding fractional exhaled NO serves as an important indicator in clinical diagnostics and therapeutic applications. However, achieving accurate and rapid monitoring of ppb-level fractional exhaled nitric oxide (FeNO) at room temperature remains a significant challenge. Herein, ultrathin porphyrin metal-organic framework (MOF) sheets are selected to assemble with supramolecularly functionalized graphene sheets through hydrogen bonding and electrostatic interaction with 6 nm thickness. The resulting porphyrin MOF/graphene sheet-on-sheet nanohybrid is designed as a chemiresistive NO sensor which exhibits superior gas sensing performance at room temperature including an ultralow practical limit of detection (R