Digital twin systems for musculoskeletal applications: A current concepts review.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Pedro Diniz, Jennifer Fayad, Frederic Garcia, Bernd Grimm, Michael T Hirschmann, Christophe Ley, Caroline Mouton, Jacob F Oeding, Kristian Samuelsson, Romain Seil

Ngôn ngữ: eng

Ký hiệu phân loại: 553.676 Talc

Thông tin xuất bản: Germany : Knee surgery, sports traumatology, arthroscopy : official journal of the ESSKA , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 662824

Digital twin (DT) systems, which involve creating virtual replicas of physical objects or systems, have the potential to transform healthcare by offering personalised and predictive models that grant deeper insight into a patient's condition. This review explores current concepts in DT systems for musculoskeletal (MSK) applications through an overview of the key components, technologies, clinical uses, challenges, and future directions that define this rapidly growing field. DT systems leverage computational models such as multibody dynamics and finite element analysis to simulate the mechanical behaviour of MSK structures, while integration with wearable technologies allows real-time monitoring and feedback, facilitating preventive measures, and adaptive care strategies. Early applications of DT systems to MSK include optimising the monitoring of exercise and rehabilitation, analysing joint mechanics for personalised surgical techniques, and predicting post-operative outcomes. While still under development, these advancements promise to revolutionise MSK care by improving surgical planning, reducing complications, and personalising patient rehabilitation strategies. Integrating advanced machine learning algorithms can enhance the predictive abilities of DTs and provide a better understanding of disease processes through explainable artificial intelligence (AI). Despite their potential, DT systems face significant challenges. These include integrating multi-modal data, modelling ageing and damage, efficiently using computational resources and developing clinically accurate and impactful models. Addressing these challenges will require multidisciplinary collaboration. Furthermore, guaranteeing patient privacy and protection against bias is extremely important, as is navigating regulatory requirements for clinical adoption. DT systems present a significant opportunity to improve patient care, made possible by recent technological advancements in several fields, including wearable sensors, computational modelling of biological structures, and AI. As these technologies continue to mature and their integration is streamlined, DT systems may fast-track medical innovation, ushering in a new era of rapid improvement of treatment outcomes and broadening the scope of preventive medicine. Level of Evidence: Level V.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH