Machine learning-driven benchmarking of China's wastewater treatment plant electricity consumption.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Junhan Gu, Hui Huang, Minjian Li, Nianchu Li, Hongqiang Ren, Chongqiao Tang, Kunlin Wu, Zhibo Zhang, Ahemaide Zhou

Ngôn ngữ: eng

Ký hiệu phân loại: 532 Fluid mechanics Liquid mechanics

Thông tin xuất bản: England : Water research X , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 664899

Benchmarking electricity consumption of wastewater treatment plants (WWTPs) is fundamental for sustainable wastewater management, as these facilities have a concomitant electricity-intensive nature along with their pollutant removal and resource recovery functions. Due to the challenge of characterizing influent water quality using traditional methods, satisfactory benchmarks have long been elusive. To overcome the complexity of wastewater compositions, an unsupervised machine learning algorithm, spectral clustering, is introduced to analyze 2,576 WWTPs across China, effectively characterizing influent quality as a single variable and contributing to robust benchmarks with 75 % of the fittings achieving coefficients of determination (R
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH