UNLABELLED: Extensive and escalating research has been directed towards halozymes derived from halophiles thriving in extreme hypersaline environments, owing to their myriad industrial applications. These extremophiles have evolved various physiological and metabolic adaptations to endure such extremes, enhancing their industrial potential. Being a potential source of lipases, halophiles of extreme niches have emerged as a emerging research area. This interest has been fueled by the recognition that extreme environments serve as rich reservoirs of diverse cold-active alkaliphilic enzymes. RESULTS: The lipase enzyme, purified to homogeneity, exhibited a molecular mass of 28 kDa as confirmed by SDS-PAGE analysis. The purification process yielded a purification fold of 12.01 and a final recovery rate of 29.9%. It demonstrated optimal activity at 30 °C and pH 9. The enzyme was evaluated and demonstrated to exhibit stability over a broad temperature range spanning from 5 °C to 55 °C, as well as a wide pH range of 7.0 to 9.0. Due to its stability across a diverse spectrum of pH values, surfactants, metal ions, and inhibitors, the enzyme appeared to hold significant promise for application within the leather and detergent sectors. Upon undergoing detergent compatibility tests spanning diverse temperature ranges, the lipase showcased compatibility with various commercial detergents, thereby presenting itself as an attractive candidate for inclusion in detergent formulations within the industry. CONCLUSIONS: The lipase from