Search for Correlations Between the Results of the Density Functional Theory and Hartree-Fock Calculations Using Neural Networks and Classical Machine Learning Algorithms.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Timur A Aliev, Pavel V Nesterov, Saadiallakh Normatov, Alexander S Novikov, Ekaterina V Skorb, Alexandra A Timralieva

Ngôn ngữ: eng

Ký hiệu phân loại: 021 Relationships of libraries, archives, information centers

Thông tin xuất bản: United States : ACS omega , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 667758

This work proposes several machine learning models that predict B3LYP-D4/def-TZVP outputs from HF-3c outputs for supramolecular structures. The data set consists of 1031 entries of dimer, trimer, and tetramer cyclic structures, containing both molecules with heteroatoms in the ring and without. Six quantum chemistry descriptors and features are calculated by using both computational methods: Gibbs energy, electronic energy, entropy, enthalpy, dipole moment, and band gap. Statistical analysis shows a good correlation between energy properties and bad correlation only for the dipole moment. Machine learning models are separated into three groups: linear, tree-based, and neural networks. The best models for the prediction of density functional theory features are LASSO for linear, XGBoost for tree-based, and single-layer perceptron for neural networks with energy-related features having the best prediction values and dipole moment having the worst.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH