Utilizing Encryption Keys Derived from Immunoaffinity Interactions as a Basis for Potential Security Enhancements.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Abby Cowley, Jan Halámek, Lenka Halámková, Richelle Manson, Jaleigh Morales, Ashley Newland

Ngôn ngữ: eng

Ký hiệu phân loại: 006.33 Knowledge-based systems

Thông tin xuất bản: United States : ACS omega , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 667907

Bioaffinity interactions allow antibodies and antigens to bind and were shown to successfully produce cryptographic keys for encryption in this research. This straightforward immune-system-based construct has shown that data obtained from immunoassay interactions may be utilized to create symmetrical key ciphers. The Advanced Encryption Standard (AES), the current standard method to encrypt and decrypt data, was implemented to show that biomolecules from immune systems can be applied to cryptography for security enhancements. When the sender and receiver use identical protocols and component concentrations, the symmetrical key ciphers can be encrypted and decrypted. Variable immunoassay concentrations, pH, temperature, and data point sorting protocols applied to encryption systems will prevent key repetition and alleviate the ability for unauthorized system access, which solves prominent issues in cryptography. This concept can also strengthen cryptographic processes by providing additional security levels of varying complexity using other indirect methods with this nontraditional immunoaffinity approach to current cipher algorithms.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH