Anti-resonance in developmental signaling regulates cell fate decisions.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Marianne Bauer, Naomi Baxter, Ryan S Lach, Samuel J Rosen, Maxwell Z Wilson, Olivier Witteveen

Ngôn ngữ: eng

Ký hiệu phân loại: 621.384196 Electrical, magnetic, optical, communications, computer engineering; electronics, lighting

Thông tin xuất bản: United States : bioRxiv : the preprint server for biology , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 672912

 Cells process dynamic signaling inputs to regulate fate decisions during development. While oscillations or waves in key developmental pathways, such as Wnt, have been widely observed, the principles governing how cells decode these signals remain unclear. By leveraging optogenetic control of the Wnt signaling pathway in both HEK293T cells and H9 human embryonic stem cells, we systematically map the relationship between signal frequency and downstream pathway activation. We find that cells exhibit a minimal response to Wnt at certain frequencies, a behavior we term anti-resonance. We developed both detailed biochemical and simplified hidden variable models that explain how anti-resonance emerges from the interplay between fast and slow pathway dynamics. Remarkably, we find that frequency directly influences cell fate decisions involved in human gastrulation
  signals delivered at anti-resonant frequencies result in dramatically reduced mesoderm differentiation. Our work reveals a previously unknown mechanism of how cells decode dynamic signals and how anti-resonance may filter against spurious activation. These findings establish new insights into how cells decode dynamic signals with implications for tissue engineering, regenerative medicine, and cancer biology.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH