Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer characterized by profound desmoplasia and cellular heterogeneity, which cannot be fully resolved using traditional bulk sequencing approaches. To understand the contribution of this heterogeneity to PDAC biology, we analyzed a large cohort of primary human PDAC samples (n = 62), profiling 443,451 single cells and 53,236 spatial transcriptomic spots using a combined single-cell RNA sequencing and spatial transcriptomics approach. Our analysis revealed significant intratumoral heterogeneity, with multiple genetically distinct neoplastic clones co-existing within individual tumors. These clones exhibited diverse transcriptional states and subtype profiles, challenging the traditional binary classification of PDAC into basal and classical subtypes
instead, our findings support a transcriptional continuum influenced by clonal evolution and spatial organization. Additionally, these clones each interacted uniquely with surrounding cell types in the tumor microenvironment. Phylogenetic analysis uncovered a rare but consistent classical-to-basal clonal transition associated with