Lipid packing and local geometry influence septin curvature sensing.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Brandy N Curtis, Christopher Edelmaier, Amy S Gladfelter, Ellysa J D Vogt

Ngôn ngữ: eng

Ký hiệu phân loại: 516.362 Integral geometry (Global differential geometry)

Thông tin xuất bản: United States : bioRxiv : the preprint server for biology , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 673713

UNLABELLED: Septins assemble into scaffolds that direct cell growth and morphology that are often localized to the plasma membrane. While septins preferentially bind convex membranes via amphipathic helices, their assembly on varied geometries in cells suggests additional localization cues. We tested the hypothesis that lipid composition directs septin assembly through lipid packing properties. Lipid mixtures varying in lipid packing were designed by molecular dynamics simulations and incorporated onto supported lipid bilayers to measure septin adsorption in vitro. Septins strongly favor loosely-packed, disordered lipid bilayers but additional geometry cues act in conjunction with this membrane property. Introducing tighter lipid packing in cells disrupted septin structures in a curvature dependent manner, specifically limiting septin assembly and retention along flat regions of the plasma membrane. This work demonstrates that packing defects and geometry jointly regulate septin localization and highlights how multiple membrane properties are integrated to control organization of the septin cytoskeleton. SUMMARY: Localization of the septin cytoskeleton is controlled by regulatory factors, membrane curvature, and charge. In this study, changes to lipid composition that modulate lipid packing defects are found to impact septin assemblies in vitro and in cells.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH