CausalGeD: Blending Causality and Diffusion for Spatial Gene Expression Generation.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Md Atik Ahamed, Qiang Cheng, Rabeya Tus Sadia

Ngôn ngữ: eng

Ký hiệu phân loại: 599.073 Collections of living mammals

Thông tin xuất bản: United States : ArXiv , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 673887

The integration of single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics (ST) data is crucial for understanding gene expression in spatial context. Existing methods for such integration have limited performance, with structural similarity often below 60\%, We attribute this limitation to the failure to consider causal relationships between genes. We present CausalGeD, which combines diffusion and autoregressive processes to leverage these relationships. By generalizing the Causal Attention Transformer from image generation to gene expression data, our model captures regulatory mechanisms without predefined relationships. Across 10 tissue datasets, CausalGeD outperformed state-of-the-art baselines by 5- 32\% in key metrics, including Pearson's correlation and structural similarity, advancing both technical and biological insights.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH