Cytochrome P450 enzymes catalyze a large number of oxidative transformations that are responsible for natural product synthesis. Recent studies have revealed their unique ability to catalyze the formation of C-N and C-S bonds, broadening their biosynthetic applications. However, the enzymatic mechanisms behind these reactions are still unclear. This review focuses on theoretical insights into the mechanisms of P450-catalyzed C-N and C-S bond formation. The key roles of the conformational dynamics of substrate radicals, influenced by the enzyme environment, in modulating selectivity and reactivity are highlighted. Understanding these reaction mechanisms offers valuable guidance for P450 enzyme engineering and the design of biosynthetic applications.