Slip detection is to recognize whether an object remains stable during grasping, which can significantly enhance manipulation dexterity. In this study, we explore slip detection for five-finger robotic hands being capable of performing various grasp types, and detect slippage across all five fingers as a whole rather than concentrating on individual fingertips. First, we constructed a dataset collected during the grasping of common objects from daily life across six grasp types, comprising more than 200 k data points. Second, according to the principle of deep double descent, we designed a lightweight universal slip detection convolutional network for different grasp types (USDConvNet-DG) to classify grasp states (no-touch, slipping, and stable grasp). By combining frequency with time domain features, the network achieves a computation time of only 1.26 ms and an average accuracy of over 97% on both the validation and test datasets, demonstrating strong generalization capabilities. Furthermore, we validated the proposed USDConvNet-DG in real-time grasp force adjustment in real-world scenarios, showing that it can effectively improve the stability and reliability of robotic manipulation.