The role of lipid phase and temperature in proton barrier and proton migration on biological membranes.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Nadav Amdursky, Dominik Drabik, Ramesh Nandi, Ambili Ramanthrikkovil Variyam, Mateusz Rzycki, Alexei A Stuchebrukhov

Ngôn ngữ: eng

Ký hiệu phân loại: 133.594 Types or schools of astrology originating in or associated with a

Thông tin xuất bản: England : Chemical science , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 675627

Biological membranes play a major role in diffusing protons on their surfaces between transmembrane protein complexes. The retention of protons on the membrane's surface is commonly described by a membrane-associated proton barrier that determines the efficiency of protons escaping from surface to bulk, which correlates with the proton diffusion (PD) dimensionality at the membrane's surface. Here, we explore the role of the membrane's biophysical properties and its ability to accept a proton from a light-triggered proton donor situated on the membrane's surface and to support PD around the probe. By changing lipid composition and temperature, while going through the melting point of the membrane, we directly investigate the role of the membrane phase in PD. We show that the proton transfer process from the proton donor to the membrane is more efficient in the liquid phase of the membrane than in the gel phase, with very low calculated activation energies that are also dependent on the lipid composition of the membrane. We further show that the liquid phase of the membrane allows higher dimensionalities (close to 3) of PD around the probe, indicating lower membrane proton barriers. In the gel phase, we show that the dimensionality of PD is lower, in some cases reaching values closer to 1, thus implying specific pathways for PD, which results in a higher proton recombination rate with the membrane-tethered probe. Computational simulations indicate that the change in PD between the two phases can be correlated to the membrane's 'stiffness' and 'looseness' at each phase.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH