Comorbidity analysis and clustering of endometriosis patients using electronic health records.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Noémie Elhadad, Linda C Giudice, Ketrin Gjoni, Juan C Irwin, Umair Khan, Jessica Opoku-Anane, Tomiko T Oskotsky, Jacquelyn Roger, Marina Sirota, Bahar D Yilmaz

Ngôn ngữ: eng

Ký hiệu phân loại:

Thông tin xuất bản: United States : medRxiv : the preprint server for health sciences , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 675661

Endometriosis is a prevalent, complex, inflammatory condition associated with a diverse range of symptoms and comorbidities. Despite its substantial burden on patients, population-level studies that explore its comorbid patterns and heterogeneity are limited. In this retrospective case-control study, we analyzed comorbidities from over forty thousand endometriosis patients across six University of California medical centers using de-identified electronic health record (EHR) data. We found hundreds of conditions significantly associated with endometriosis, including genitourinary disorders, neoplasms, and autoimmune diseases, with strong replication across datasets. Clustering analyses identified patient subpopulations with distinct comorbidity patterns, including psychiatric and autoimmune conditions. This study provides a comprehensive analysis of endometriosis comorbidities and highlights the heterogeneity within the patient population. Our findings demonstrate the utility of EHR data in uncovering clinically meaningful patterns and suggest pathways for personalized disease management and future research on biological mechanisms underlying endometriosis.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH