Nonhealing chronic wounds are intractable clinical complications of diabetes and are characterized by high protease activity, severe oxidative stress and sustained inflammatory response. In this case, the development of functional hydrogel dressings to modulate the immune microenvironment is a well-known strategy, where the precise stimuli-responsive and spatiotemporally controlled release of bioactive molecules remains a huge challenge. Herein, we developed responsive hydrogels with self-regulated bioactive molecule release based on the protease activity in diabetic wound sites, to serve as a smart immune microenvironment modulator for accelerating wound healing. The hydrogels were fabricated by grafting oxidized hyaluronic acid with epigallocatechin-3-gallate (EGCG) and gelatin methacryloyl (GelMA) under UV irradiation. Resveratrol nanoparticles were further loaded into the hydrogels before gelation to construct a polyphenol delivery system. The prepared hydrogels could achieve the on-demand release of polyphenol upon degradation by protease, as confirmed