Establishment of a nomogram model based on immune-related genes using machine learning for aortic dissection diagnosis and immunomodulation assessment.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Yongkun Chen, Guangquan Ge, Yanjun Hou, Wei Jie, Shengnan Liu, Yipeng Pan, Kaijia Shi, Zhensu Shi, Jizhen Wu, Chaoyang Zhao, Lini Zhao, Yangyang Zhao

Ngôn ngữ: eng

Ký hiệu phân loại: 262.924 Quinque compilationes antiquae

Thông tin xuất bản: Australia : International journal of medical sciences , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 675977

The clinical manifestation of aortic dissection (AD) is complex and varied, making early diagnosis crucial for patient survival. This study aimed to identify immune-related markers to establish a nomogram model for AD diagnosis. Three datasets from GEO-GSE52093, GSE147026 and GSE153434-were combined and used for identification of immune-related causative genes using weighted gene co-expression network analysis, and 136 immune-related genes were obtained. Then, 15 pivotal genes were screened by the protein-protein interaction network. Through machine learning including the Least Absolute Shrinkage and Selection Operator algorithm, random forest algorithm, and multivariate logistic regression, four key feature genes were obtained-
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH