Wireless strain sensors with minimal power needs are essential for long-term monitoring in energy-limited environments. We present a soft tunneling barrier-integrated gold thin film for negative strain sensing with near-zero energy consumption. The device features a strain-induced transition from an insulating to a metallic state, increasing conductivity by 9 orders of magnitude under a controlled strain. It consists of Au-PDMS-Au nanofilm layers, where the Au structures are near the percolation threshold and the PDMS layer acts as a tunneling barrier. Under strain, thinning due to the Poisson effect lowers the barrier's potential height, enabling electron tunneling and forming an electrical path. With a standby power consumption of ∼10