The study examined the potential applications of propolis, polyvinyl alcohol (PVA), and Alhagi maurorum extracts in drug delivery systems, utilizing both computer and lab methods. The study uses molecular docking probes along with DFT (density functional theory) to investigate molecular interactions and examine the binding of drugs to carrier materials. The HOMO (Highest Occupied Molecular Orbital)-LUMO (Lowest Occupied Molecular Orbital) gap for the mix of PVA, galangin, and triterpene glycoside is -0.07621 eV, which matches the experiment results. This small gap enhances responsiveness in drug delivery applications, which is crucial for successful interactions with biological targets. It's possible that a delivery system that combines galangin and triterpene glycosides would work better and be more compatible with living things.The experimental results of the Methyl Thiazole Tetrazolium (MTT) show consistent findings: The viability of MCF7, a human breast cancer cell line, significantly decreased at all concentrations of propolis and polyvinyl alcohol compared to WRL68, a fetal liver cell line. Within-group comparisons showed less viability in both groups at 400 µg/ml. Mean ± SD: 42.05267 ± 1.951655
67.12533 ± 7.401263.In the positive control group, the average number of malignant cells was 47.06, but the average number of cells in the fourth treatment (Propolis + PVA) and the third combination (Propolis + Alhagi maurorum + PVA) were 42.05267 and 42.97800, respectively. The Sustainable Development Goals in Industry and Innovation are focusing on developing a new combination of alhagi and propolis using PVA as a polymer carrier.