Novel Silicon-Based Fluorescent Nanocomposite Drug Carriers for Natural Compound Delivery in Melanoma Treatment.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Denglin Chen, Fei Gao, Guangshuai Li, Lei Li, Xia Lin, Linbo Liu, Yun Liu, Jiayao Wang, Wenjian You, Wang Zhan, Jianan Zhang

Ngôn ngữ: eng

Ký hiệu phân loại:

Thông tin xuất bản: Netherlands : Journal of fluorescence , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 676612

Melanoma, a highly aggressive cancer, is closely associated with an elevated tumor mutation burden (TMB) and an active tumor microenvironment (TME). Melanin synthesis, a key feature of melanoma progression, is primarily regulated by tyrosinase (TYR), the rate-limiting enzyme controlled by the microphthalmia-associated transcription factor (MITF). Resveratrol (Res), a natural polyphenol known for its antioxidant and anticancer properties, faces limitations including poor solubility, low bioavailability, and rapid metabolism. To overcome these challenges, a three-dimensional Co(II) coordination polymer {[Co(bpdado)(bpe)(H₂O)₂]·2DMF·2 H₂O}n (1) was synthesized and incorporated into a composite material, 1@CP1, for Res delivery (1@CP1@Res). The system exhibited enhanced solubility, pH-sensitive release, and improved biological activity. Fluorescence assays demonstrated significant quenching in the presence of Cu²⁺ ions, indicating a high sensitivity of 1@CP1@Res to metal ion interactions. The pH-responsive drug release profile was confirmed by in vitro studies showing accelerated release at lower pH values, mimicking the acidic tumor microenvironment. Cell viability assays revealed that 1@CP1@Res significantly inhibited the proliferation of murine B16-F10 melanoma cells, with cell survival rates of 72.4%, 58.2%, and 43.6% at 24, 48, and 72 h of incubation, respectively, at a concentration of 100 µM. Molecular docking studies further revealed multiple binding interactions between Res and the coordination polymer, suggesting a promising therapeutic strategy for melanoma treatment by integrating advanced materials with bioactive compounds.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH