A preliminary investigation into the potential, pitfalls, and limitations of large language models for mammography interpretation.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Serena Carriero, Enrico Cassano, Valeria Dominelli, Federica Ferrari, Luca Nicosia, Silvia Penco, Filippo Pesapane, Anna Rotili, Giulia Signorelli, Chiara Trentin

Ngôn ngữ: eng

Ký hiệu phân loại: 262.15 Laity

Thông tin xuất bản: United States : Discover oncology , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 676686

This study evaluates the capabilities of large language models, specifically GPT-4, in interpreting mammographic images. The analysis involved 120 mammographic images equally divided between cases with and without mammography's findings. Without additional context, the LLM was tasked to generate reports based solely on these images. GPT-4 correctly identified mammographic projections in 53.3% of cases and showed varying degrees of accuracy in identifying microcalcifications and masses. The study highlighted GPT-4's embryonic interpretative abilities with a sensitivity of 50.0% and specificity of 37.5%. However, a significant rate of false positives and false negatives, along with hallucinations, underscored the model's limitations. This exploratory test offers insights into the potential and risks of using LLMs in mammography interpretation, also underscoring the need for dedicated training, validation, and regulation of AI tools in healthcare to ensure their reliability and safety in clinical practice.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH