Simplifying causal gene identification in GWAS loci.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Karl Heilbron, Danielle Posthuma, Stephan Ripke, Marijn Schipper, Jacob Ulirsch

Ngôn ngữ: eng

Ký hiệu phân loại: 297.1248 Sources of Islam

Thông tin xuất bản: United States : medRxiv : the preprint server for health sciences , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 677381

 Genome-wide association studies (GWAS) help to identify disease-linked genetic variants, but pinpointing the most likely causal genes in GWAS loci remains challenging. Existing GWAS gene prioritization tools are powerful but often use complex black box models trained on datasets containing unaddressed biases. Here, we use a data-driven approach to construct a truth set of causal genes in 406 GWAS loci. We train a gene prioritization tool, CALDERA, that uses a simple logistic regression model with L1 regularization and corrects for potential confounders. Using three independent benchmarking datasets of resolved GWAS loci, we compare the performance of CALDERA with three other methods (FLAMES, L2G, and cS2G). CALDERA outperforms all these methods in two out of three datasets and ranks second in the remaining dataset. We demonstrate that CALDERA prioritizes genes with expected properties, such as mutation intolerance (OR = 1.751 for pLI >
  90%, P = 8.45x10
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH