A cell atlas foundation model for scalable search of similar human cells.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Tommaso Biancalani, Héctor Corrada Bravo, Daryle J DePianto, Nathaniel Diamant, Tobias Heigl, Graham Heimberg, Josh Kaminker, Tony Kuo, Aviv Regev, Jason R Rock, Omar Salem, Gabriele Scalia, Shannon J Turley, Jason A Vander Heiden

Ngôn ngữ: eng

Ký hiệu phân loại: 597.948 *Amphisbaenia (Worm lizards)

Thông tin xuất bản: England : Nature , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 677743

Single-cell RNA sequencing has profiled hundreds of millions of human cells across organs, diseases, development and perturbations to date. Mining these growing atlases could reveal cell-disease associations, identify cell states in unexpected tissue contexts and relate in vivo biology to in vitro models. These require a common measure of cell similarity across the body and an efficient way to search. Here we develop SCimilarity, a metric-learning framework to learn a unified and interpretable representation that enables rapid queries of tens of millions of cell profiles from diverse studies for cells that are transcriptionally similar to an input cell profile or state. We use SCimilarity to query a 23.4-million-cell atlas of 412 single-cell RNA-sequencing studies for macrophage and fibroblast profiles from interstitial lung disease
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH