The neurovascular unit (NVU), comprising vascular, glial, and neural elements, supports the energetic demands of neural computation, but this aspect of the retina's trilaminar vessel network is poorly understood. Only the innermost vessel layer-the superficial vascular plexus (SVP)-is associated with astrocytes, like brain capillaries, whereas radial Müller glia interact with vessels in the other layers. Using serial electron microscopic reconstructions from mouse and primate retina, we find that Müller processes cover capillaries in a tessellating pattern, mirroring the wrapping of brain capillaries by tiled astrocytic endfeet. Gaps in the Müller sheath, found mainly in the intermediate vascular plexus (IVP), permit diverse neuron types to contact pericytes and the endothelial cells directly. Pericyte somata are a favored target, often at spine-like structures with reduced or absent vascular basement lamina. Focal application of ATP to the vitreal surface evoked Ca