Predicting RNA structure and dynamics with deep learning and solution scattering.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Scott Classen, Michal Hammel, Edan Patt, Dina Schneidman-Duhovny

Ngôn ngữ: eng

Ký hiệu phân loại: 539.758 Scattering

Thông tin xuất bản: United States : Biophysical journal , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 678130

Advanced deep learning and statistical methods can predict structural models for RNA molecules. However, RNAs are flexible, and it remains difficult to describe their macromolecular conformations in solutions where varying conditions can induce conformational changes. Small-angle x-ray scattering (SAXS) in solution is an efficient technique to validate structural predictions by comparing the experimental SAXS profile with those calculated from predicted structures. There are two main challenges in comparing SAXS profiles to RNA structures: the absence of cations essential for stability and charge neutralization in predicted structures and the inadequacy of a single structure to represent RNA's conformational plasticity. We introduce a solution conformation predictor for RNA (SCOPER) to address these challenges. This pipeline integrates kinematics-based conformational sampling with the innovative deep learning model, IonNet, designed for predicting Mg
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH