Chicoric acid, a phenolic compound derived from plants, exhibits a range of pharmacological activities. Light significantly influences the chicoric acid biosynthesis in Taraxacum mongolicum
however, the transcriptional regulatory network governing this process remains unclear. A combined analysis of the metabolome and transcriptome revealed that blue light markedly enhances chicoric acid accumulation compared to red light. The blue light-sensitive transcription factor ELONGATED HYPOCOTYL5 (HY5) is closely associated with multiple core proteins, transcription factors and chicoric acid synthase genes involved in light signalling. Both in vivo and in vitro experiments demonstrated that TmHY5 directly regulates several chicoric acid biosynthetic genes, including TmPAL3, Tm4CL1 and TmHQT2. Additionally, TmHY5 promotes the accumulation of luteolin and anthocyanins by increasing the expression of TmCHS2 and TmANS2. The E3 ubiquitin ligase CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1) forms a protein complex with TmHY5, significantly inhibiting chicoric acid biosynthesis. Blue light inhibits TmCOP1-TmHY5 complex protein formation while enhancing the expression levels of TmCOP1 through TmHY5. Furthermore, TmHY5 elevates the expression levels of TmbZIP1, which indirectly activates Tm4CL1 expression. In vivo, TmCOP1 directly inhibits the expression of the TmHY5-Tm4CL1 complex. Therefore, we speculate that TmCOP1-TmHY5-mediated blue light signalling effectively activates chicoric acid biosynthesis, providing a foundation for the application of blue light supplementation technology in industrial production.