Zearalenone has a high level of detection and exceedance in cereals and by-products. Herein, an electrochemical aptasensor for ZEN detection was proposed. The selected aptamer, which has a high affinity for ZEN, serves as a molecular recognition element and effectively avoids interference from other toxins. Meanwhile, the strategy of exonuclease III-assisted target recycling and DNAzyme-catalysed substrate cleavage was combined. Aptamers and RNA-cleaving DNAzymes, two types of functional nucleic acids, have demonstrated considerable potential as key components of biosensors for the detection of biological targets. Enzyme-assisted signal amplification technology also helps to detect trace levels of ZEN. Under optimal conditions, the proposed aptasensor exhibited remarkable repeatability (RSD: 2.73 %) and superior detection performance over a wide concentration range (100 fg/mL-50 ng/mL), with a detection limit of 89 fg/mL. In actual analysis of cereal samples, the results are comparable to those of liquid chromatography, greatly extending the selectivity of ZEN detection.