Modeling the Aging Human Lung: Generation of a Senescent Human Lung Organoid Culture System.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Mohit Aspal, Jerold Chun, Matangi Kumar, Sandra L Leibel, Jamey D Marth, Rachael N McVicar, Melina Melameka, Temiloluwa Ogunyamoju, Natalie Pushlar, Emily Smith, Evan Y Snyder

Ngôn ngữ: eng

Ký hiệu phân loại:

Thông tin xuất bản: United States : bioRxiv : the preprint server for biology , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 678715

INTRODUCTION: The aging lung enters into a state of irreversible cellular growth arrest characterized by senescence. While senescence is beneficial in preventing oncogenic cell proliferation, it becomes detrimental when persistent, promoting chronic inflammation and fibrosis through the senescence-associated secretory phenotype (SASP). Such senescence-related pathophysiological processes play key roles in lung diseases like chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF). However, few models accurately represent senescence in the human lung. METHODS: To generate a human lung senescence RESULTS: The doxorubicin-induced senescent hiPSC-derived lung cells demonstrated the hallmark characteristics of cellular senescence, including increased β-gal activity and increased production of the pro-inflammatory SASP cytokine IL-6 and increased secretion of TNF-α. Senescent cells displayed enlarged morphology, decreased proliferation, and reduced wound repair capacity. Barrier integrity was impaired with decreased electrical resistance, and increased permeability, as well as expression of abnormal tight junction proteins and increased fibrosis, all consistent with the senescent lung. CONCLUSION: Our hiPSC-derived lung cell senescent model reproduces key aspects of human lung senescence and offer an
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH