Maximum Entropy-Mediated Liquid-to-Solid Nucleation and Transition.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Lars Dammann, Patrick Huber, Richard Kohns, Robert H Meißner

Ngôn ngữ: eng

Ký hiệu phân loại:

Thông tin xuất bản: United States : Journal of chemical theory and computation , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 680071

Molecular dynamics (MD) simulations are a powerful tool for studying matter at the atomic scale. However, to simulate solids, an initial atomic structure is crucial for the successful execution of MD simulations but can be difficult to prepare due to insufficient atomistic information. At the same time, wide-angle X-ray scattering (WAXS) measurements can determine the radial distribution function (RDF) of atomic structures. However, the interpretation of RDFs is often challenging. Here, we present an algorithm that can bias MD simulations with RDFs by combining the information on the MD atomic interaction potential and the RDF under the principle of maximum relative entropy. We show that this algorithm can be used to adjust the RDF of one liquid model, e.g., the TIP3P water model, to reproduce the RDF and improve the angular distribution function (ADF) of another model, such as the TIP4P/2005 water model. In addition, we demonstrate that the algorithm can initiate crystallization in liquid systems, leading to both stable and metastable crystalline states defined by the RDF, e.g., crystallization of water to ice and liquid TiO
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH