Adsorption-Site- and Orientation-Dependent Magnetism of a Molecular Switch on Pb(100).

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Arnab Banerjee, Richard Berndt, Niklas Ide, Yan Lu, Alexander Weismann

Ngôn ngữ: eng

Ký hiệu phân loại: 133.594 Types or schools of astrology originating in or associated with a

Thông tin xuất bản: United States : ACS nano , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 680083

Tin phthalocyanine (SnPc) has been studied on superconducting Pb(100) using scanning tunneling microscopy and spectroscopy. Isolated molecules adsorb with their Sn ion below (SnPc↓) or above (SnPc↑) the molecular plane. These geometries lead to different adsorption sites, molecular orientations, and energies of the frontier orbitals. A transition from SnPc↑ to SnPc↓ can be induced by extracting electrons from a single molecule. Density functional theory (DFT) calculations reproduce the observed geometries and indicate that a positive charge of the molecules facilitates the ↑-↓ transition. The molecular orientations are essentially determined by the σ-orbitals on the peripheral N atoms and exhibit minimum distances of their lone pairs from the nearest Pb substrate atoms. This binding scheme, which implies a direct relationship between the adsorption site and the molecular orientation, is consistent with many previous observations on other substrates. In molecular islands, single molecules can be forced onto less favorable adsorption sites. This leads to a strong Yu-Shiba-Rusinov state of SnPc↓ at top sites revealing an induced molecular spin. Similarly, the spin observed from SnPc↑ on hollow sites is quenched by their conversion to SnPc↓. The calculated lowest unoccupied molecular orbital energies are consistent with these spin-state transitions.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH