Force-activated zyxin assemblies coordinate actin nucleation and crosslinking to orchestrate stress fiber repair.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Gregory M Alushin, Donovan Y Z Phua, Xiaoyu Sun

Ngôn ngữ: eng

Ký hiệu phân loại: 181.4 *India

Thông tin xuất bản: England : Current biology : CB , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 680098

As the cytoskeleton sustains cell and tissue forces, it incurs physical damage that must be repaired to maintain mechanical homeostasis. The LIN-11, Isl-1, and Mec-3 (LIM)-domain protein zyxin detects force-induced ruptures in actin-myosin stress fibers, coordinating downstream repair factors to restore stress fiber integrity through unclear mechanisms. Here, we reconstitute stress fiber repair with purified proteins, uncovering detailed links between zyxin's force-regulated binding interactions and cytoskeletal dynamics. In addition to binding individual tensed actin filaments (F-actin), zyxin's LIM domains form force-dependent assemblies that bridge broken filament fragments. Zyxin assemblies engage repair factors through multivalent interactions, coordinating nucleation of new F-actin by VASP and its crosslinking into aligned bundles by ɑ-actinin. Through these combined activities, stress fiber repair initiates within the cores of micron-scale damage sites in cells, explaining how these F-actin-depleted regions are rapidly restored. Thus, zyxin's force-dependent organization of actin repair machinery inherently operates at the network scale to maintain cytoskeletal integrity.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH