Non-iterative Triples for Transcorrelated Coupled Cluster Theory.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Alberto Baiardi, Michał Lesiuk, Maximilian Mörchen, Markus Reiher

Ngôn ngữ: eng

Ký hiệu phân loại: 133.594 Types or schools of astrology originating in or associated with a

Thông tin xuất bản: United States : Journal of chemical theory and computation , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 680341

We present an implementation of a perturbative triples correction for the coupled cluster ansatz including single and double excitations based on the transcorrelated Hamiltonian. Transcorrelation introduces explicit electron correlation in the electronic Hamiltonian through similarity transformation with a correlation factor. Due to this transformation, the transcorrelated Hamiltonian includes up to three-body couplings and becomes non-Hermitian. Since the conventional coupled cluster equations are solved by projection, it is well suited to harbor non-Hermitian Hamiltonians. The arising three-body operator, however, creates a huge memory bottleneck and increases the runtime scaling of the coupled cluster equations. As it has been shown that the three-body operator can be approximated, by expressing the Hamiltonian in the normal-ordered form, we investigate this approximation for the perturbative triples correction. Results are compared with a code-generation based transcorrelated coupled cluster implementation up to quadruple excitations.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH