Neural Network Potential with Multiresolution Approach Enables Accurate Prediction of Reaction Free Energies in Solution.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Eva Doloszeski, Igor Gordiy, Felix Pultar, Sereina Riniker, Moritz Thürlemann

Ngôn ngữ: eng

Ký hiệu phân loại:

Thông tin xuất bản: United States : Journal of the American Chemical Society , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 680354

We present the design and implementation of a novel neural network potential (NNP) and its combination with an electrostatic embedding scheme, commonly used within the context of hybrid quantum-mechanical/molecular-mechanical (QM/MM) simulations. Substitution of a computationally expensive QM Hamiltonian by an NNP with the same accuracy largely reduces the computational cost and enables efficient sampling in prospective MD simulations, the main limitation faced by traditional QM/MM setups. The model relies on the recently introduced anisotropic message passing (AMP) formalism to compute atomic interactions and encode symmetries found in QM systems. AMP is shown to be highly efficient in terms of both data and computational costs and can be readily scaled to sample systems involving more than 350 solute and 40,000 solvent atoms for hundreds of nanoseconds using umbrella sampling. Most deviations of AMP predictions from the underlying DFT ground truth lie within chemical accuracy (4.184 kJ mol
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH