The effect of traits on diversification rates is a major topic of study in the fields of evolutionary biology and palaeontology. Many researchers investigating these macroevolutionary questions currently make use of the extensive suite of state-dependent speciation and extinction (SSE) models. These models were developed for, and are almost exclusively used with, phylogenetic trees of extant species. However, analyses considering only extant taxa are limited in their power to estimate extinction rates. Furthermore, SSE models can erroneously detect associations between neutral traits and diversification rates when the true associated trait is not observed. In this study, we examined the impact of including fossil data on the accuracy of parameter estimates under the binary-state speciation and extinction (BiSSE) model. This was achieved by combining SSE models with the fossilized birth-death process. We show that the inclusion of fossils improves the accuracy of extinction-rate estimates for analyses applying the BiSSE model in a Bayesian inference framework, with no negative impact on speciation-rate and state transition-rate estimates when compared with estimates from trees of only extant taxa. However, even with the addition of fossil data, analyses under the BiSSE model continued to incorrectly identify correlations between diversification rates and neutral traits.This article is part of the theme issue '"A mathematical theory of evolution": phylogenetic models dating back 100 years'.