The abnormal effector function of CD4+ T cells plays a key role in the pathogenesis of Sjogren's syndrome (SS) and its associated systematic autoimmune response. Cellular metabolism, including glucose metabolism, lipid metabolism and amino acid metabolism, supports proliferation, migration, survival and differentiation into distinct CD4+ T-cell subsets. Different subtypes of T cells have significantly different demands for related metabolic processes, which enables us to finely regulate CD4+ T cells through different metabolic processes in autoimmune diseases such as SS. In this review, we summarize the effects of disturbances in distinct metabolic processes, such as glycolysis, fatty acid metabolism, glutamine decomposition, mitochondrial dynamics, and ferroptosis, on how to support the effector functions of CD4+ T cells in the SS. We also discuss potential drugs with high value in the treatment of SS through metabolic normalization in CD4+ T cells. Finally, we propose possible directions for future targeted therapy for immunometabolism in SS.