GOHBA: Improved Honey Badger Algorithm for Global Optimization.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Tao Han, Yourui Huang, Tingting Li, Quanzeng Liu, Sen Lu

Ngôn ngữ: eng

Ký hiệu phân loại: 133.594 Types or schools of astrology originating in or associated with a

Thông tin xuất bản: Switzerland : Biomimetics (Basel, Switzerland) , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 680574

Aiming at the problem that the honey badger algorithm easily falls into local convergence, insufficient global search ability, and low convergence speed, this paper proposes a global optimization honey badger algorithm (Global Optimization HBA) (GOHBA), which improves the search ability of the population, with better ability to jump out of the local optimum, faster convergence speed, and better stability. The introduction of Tent chaotic mapping initialization enhances the population diversity and initializes the population quality of the HBA. Replacing the density factor enhances the search range of the algorithm in the entire solution space and avoids premature convergence to a local optimum. The addition of the golden sine strategy enhances the global search capability of the HBA and accelerates the convergence speed. Compared with seven algorithms, the GOHBA achieves the optimal mean value on 14 of the 23 tested functions. On two real-world engineering design problems, the GOHBA was optimal. On three path planning problems, the GOHBA had higher accuracy and faster convergence. The above experimental results show that the performance of the GOHBA is indeed excellent.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH