Nonlinear physics perspective and essential disease dynamics of EBV infections and the dynamics of EBV-associated diseases.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Surasak Chiangga, Till Daniel Frank, Saman Mongkolsakulvong

Ngôn ngữ: eng

Ký hiệu phân loại:

Thông tin xuất bản: Netherlands : Journal of biological physics , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 680657

The Epstein-Barr virus affects more than 90% of the world population and, consequently, is a virus whose infection dynamics should not be overlooked. It can cause the disease infectious mononucleosis and comes with other virus-associated diseases and conditions ranging from certain cancers to episodes of fatigue and depression. While previous epidemiological and virological modeling studies have worked out the details of possible infection dynamics scenarios, the current study takes a different approach. Using a nonlinear physics perspective and a fairly general epidemiological model, we identify the essential EBV infection dynamics along its so-called infection order parameter. We demonstrate that the essential dynamics describes the initial path that EBV infections take in the multi-dimensional model space. In particular, we show that the essential dynamics predicts the initial dynamics of the relevant subpopulations and describes how the subpopulations involved in an EBV infection outbreak organize themselves during the outbreak. Intervention and prevention measures are discussed in the context of the nonlinear physics perspective. An adverse synergy effect between two infection rate parameters is identified. An early warning system based on the so-called critical slowing down phenomenon is proposed for EBV infection waves in college and university student populations, which are populations particularly vulnerable to EBV infections.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH