Deep Learning Approach Predicts Longitudinal Retinal Nerve Fiber Layer Thickness Changes.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Akram Belghith, Christopher Bowd, Mark Christopher, Carlos Gustavo De Moraes, Massimo A Fazio, Christopher A Girkin, Michael H Goldbaum, Jalil Jalili, Jeffrey M Liebmann, Evan Walker, Robert N Weinreb, Linda M Zangwill

Ngôn ngữ: eng

Ký hiệu phân loại: 616.55 *Pigmentary changes

Thông tin xuất bản: Switzerland : Bioengineering (Basel, Switzerland) , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 680738

This study aims to develop deep learning (DL) models to predict the retinal nerve fiber layer (RNFL) thickness changes in glaucoma, facilitating the early diagnosis and monitoring of disease progression. Using the longitudinal data from two glaucoma studies (Diagnostic Innovations in Glaucoma Study (DIGS) and African Descent and Glaucoma Evaluation Study (ADAGES)), we constructed models using optical coherence tomography (OCT) scans from 251 participants (437 eyes). The models were trained to predict the RNFL thickness at a future visit based on previous scans. We evaluated four models: linear regression (LR), support vector regression (SVR), gradient boosting regression (GBR), and a custom 1D convolutional neural network (CNN). The GBR model achieved the best performance in predicting pointwise RNFL thickness changes (MAE = 5.2 μm, R
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH