The use of supraphysiologic testosterone, particularly when alternated with an anti-androgen agent in men with metastatic castration-resistant prostate cancer (CRPC), has demonstrated promising results in clinical trials. As the use of this therapy in clinical practice is more widely adopted, there will be a growing need to understand the mechanisms of resistance. To that end, we independently derived three separate cell models of testosterone-sensitive CRPC. From each CRPC line, high dose testosterone-resistance (HTR) lines were selected. We demonstrated the differential response of the three CRPC lines to a high dose of testosterone in vitro and in vivo. We subsequently demonstrated the resistance of the HTR lines to testosterone and varying responses to testosterone withdrawal in vivo. The heterogeneity in responses to hormonal manipulation is correlated with varying levels of androgen receptor expression within the population. Overall, we show that we have developed three models of HTR that can be used to study the mechanisms of high dose testosterone resistance and identify potential therapeutic targets.