How can cellular electrophysiology measurements and mathematical modeling of ionic channels help to identify pivotal targets in disease-related cell signaling? The purpose of this review is to highlight the advantages and disadvantages of using both of these complementary techniques to determine molecular targets that may be structurally or functionally altered in a specific disease. In addition, both electrophysiology measurements and mathematical modeling may improve coordinated drug development, accelerate the prediction of new drugs, and facilitate repositioning of pharmacological agents. This review focuses on the data obtained from electrophysiology and mathematical model approaches, including intracellular recording, cellular patch clamp measurements, and the Hodgkin and Huxley equation, as key precision methodologies. To this end, seminiferous tubules, the Sertoli cell line (TM4), and/or primary cultures of Sertoli cells were used to explore the role of follicle-stimulating hormone (FSH), thyroid hormones, retinol, testosterone, and 1,25(OH)