Alzheimer's disease (AD) is the most common form of dementia with continuum of disease progression of increasing severity from subjective cognitive decline (SCD) to mild cognitive impairment (MCI) and lastly to AD. The transition from MCI to AD has been linked to brain hypersynchronization, but the underlying mechanisms leading to this are unknown. Here, we hypothesized that excessive excitation in AD disease progression would shift brain dynamics toward supercriticality across an extended regime of critical-like dynamics. In this framework, healthy brain activity during aging preserves operation at near the critical phase transition at balanced excitation-inhibition (E/I). To test this hypothesis, we used source-reconstructed resting-state MEG data from a cross-sectional cohort (